Short-term administration of two different antidepressant types had similar effects on emotion-related tasks in healthy volunteers, reducing the processing of negative relative to positive emotional material. Such effects of antidepressants may ameliorate the negative biases in information processing that characterize mood and anxiety disorders. They also suggest a mechanism of action potentially compatible with cognitive theories of anxiety and depression.
Antidepressants may work in a manner consistent with cognitive theories of depression. Antidepressants do not act as direct mood enhancers but rather change the relative balance of positive to negative emotional processing, providing a platform for subsequent cognitive and psychological reconsolidation.
Antidepressant drug administration modulates emotional processing in depressed patients very early in treatment, before changes occur in mood and symptoms. This effect may ameliorate the negative biases in information processing that characterize mood and anxiety disorders. It also suggests a mechanism of action compatible with cognitive theories of depression.
RationaleThere is now compelling evidence for a link between enteric microbiota and brain function. The ingestion of probiotics modulates the processing of information that is strongly linked to anxiety and depression, and influences the neuroendocrine stress response. We have recently demonstrated that prebiotics (soluble fibres that augment the growth of indigenous microbiota) have significant neurobiological effects in rats, but their action in humans has not been reported.ObjectivesThe present study explored the effects of two prebiotics on the secretion of the stress hormone, cortisol and emotional processing in healthy volunteers.MethodsForty-five healthy volunteers received one of two prebiotics (fructooligosaccharides, FOS, or Bimuno®-galactooligosaccharides, B-GOS) or a placebo (maltodextrin) daily for 3 weeks. The salivary cortisol awakening response was sampled before and after prebiotic/placebo administration. On the final day of treatment, participants completed a computerised task battery assessing the processing of emotionally salient information.ResultsThe salivary cortisol awakening response was significantly lower after B-GOS intake compared with placebo. Participants also showed decreased attentional vigilance to negative versus positive information in a dot-probe task after B-GOS compared to placebo intake. No effects were found after the administration of FOS.ConclusionThe suppression of the neuroendocrine stress response and the increase in the processing of positive versus negative attentional vigilance in subjects supplemented with B-GOS are consistent with previous findings of endocrine and anxiolytic effects of microbiota proliferation. Further studies are therefore needed to test the utility of B-GOS supplementation in the treatment of stress-related disorders.
Most currently available antidepressants target monoamine neurotransmitter function. However, a purely neurotransmitter-based explanation for antidepressant drug action is challenged by the delayed clinical onset of most agents and the need to explain how neurochemical changes reverse the many different symptoms of depression. Novel approaches to understanding of antidepressant drug action include a focus on early changes in emotional and social processing and the role of neural plasticity. In this Review, we discuss the ways in which these two different theories reflect different or complementary approaches, and how they might be integrated to offer novel solutions for people with depression. We consider the predictions made by these mechanistic approaches for the stratification and development of new therapeutics for depression, and the next steps that need to be made to facilitate this translation of science to the clinic.
BackgroundSelective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans.MethodsWe studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment.ResultsCitalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect.ConclusionsOur findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.