Abstract-Objective:To establish consensus recommendations among health care specialties for defining and establishing diagnostic criteria for the minimally conscious state (MCS). Background: There is a subgroup of patients with severe alteration in consciousness who do not meet diagnostic criteria for coma or the vegetative state (VS). These patients demonstrate inconsistent but discernible evidence of consciousness. It is important to distinguish patients in MCS from those in coma and VS because preliminary findings suggest that there are meaningful differences in outcome. Methods: An evidence-based literature review of disorders of consciousness was completed to define MCS, develop diagnostic criteria for entry into MCS, and identify markers for emergence to higher levels of cognitive function. Results: There were insufficient data to establish evidence-based guidelines for diagnosis, prognosis, and management of MCS. Therefore, a consensusbased case definition with behaviorally referenced diagnostic criteria was formulated to facilitate future empirical investigation. Conclusions: MCS is characterized by inconsistent but clearly discernible behavioral evidence of consciousness and can be distinguished from coma and VS by documenting the presence of specific behavioral features not found in either of these conditions. Patients may evolve to MCS from coma or VS after acute brain injury. MCS may also result from degenerative or congenital nervous system disorders. This condition is often transient but may also exist as a permanent outcome. Defining MCS should promote further research on its epidemiology, neuropathology, natural history, and management.
IMPORTANCE Players of American football may be at increased risk of long-term neurological conditions, particularly chronic traumatic encephalopathy (CTE). OBJECTIVE To determine the neuropathological and clinical features of deceased football players with CTE. DESIGN, SETTING, AND PARTICIPANTS Case series of 202 football players whose brains were donated for research. Neuropathological evaluations and retrospective telephone clinical assessments (including head trauma history) with informants were performed blinded. Online questionnaires ascertained athletic and military history. EXPOSURES Participation in American football at any level of play. MAIN OUTCOMES AND MEASURES Neuropathological diagnoses of neurodegenerative diseases, including CTE, based on defined diagnostic criteria; CTE neuropathological severity (stages I to IV or dichotomized into mild [stages I and II] and severe [stages III and IV]); informant-reported athletic history and, for players who died in 2014 or later, clinical presentation, including behavior, mood, and cognitive symptoms and dementia. RESULTS Among 202 deceased former football players (median age at death, 66 years [interquartile range, 47–76 years]), CTE was neuropathologically diagnosed in 177 players (87%; median age at death, 67 years [interquartile range, 52–77 years]; mean years of football participation, 15.1 [SD, 5.2]), including 0 of 2 pre–high school, 3 of 14 high school (21%), 48 of 53 college (91%), 9 of 14 semiprofessional (64%), 7 of 8 Canadian Football League (88%), and 110 of 111 National Football League (99%) players. Neuropathological severity of CTE was distributed across the highest level of play, with all 3 former high school players having mild pathology and the majority of former college (27 [56%]), semiprofessional (5 [56%]), and professional (101 [86%]) players having severe pathology. Among 27 participants with mild CTE pathology, 26 (96%) had behavioral or mood symptoms or both, 23 (85%) had cognitive symptoms, and 9 (33%) had signs of dementia. Among 84 participants with severe CTE pathology, 75 (89%) had behavioral or mood symptoms or both, 80 (95%) had cognitive symptoms, and 71 (85%) had signs of dementia. CONCLUSIONS AND RELEVANCE In a convenience sample of deceased football players who donated their brains for research, a high proportion had neuropathological evidence of CTE, suggesting that CTE may be related to prior participation in football.
Amantadine accelerated the pace of functional recovery during active treatment in patients with post-traumatic disorders of consciousness. (Funded by the National Institute on Disability and Rehabilitation Research; ClinicalTrials.gov number, NCT00970944.).
This review focuses on the potential for traumatic brain injury to evoke both focal and diffuse changes within the brain parenchyma, while considering the cellular constituents involved and the subcellular perturbations that contribute to their dysfunction. New insight is provided on the pathobiology of traumatically induced cell body injury and diffuse axonal damage. The consequences of axonal damage in terms of subsequent deafferentation and any potential retrograde cell death and atrophy are addressed. The regional and global metabolic sequelae are also considered. This detailed presentation of the neuropathological consequences of traumatic brain injury is used to set the stage for better appreciating the neurological recovery occurring after traumatic injury. Although the pathological and clinical effects of focal and diffuse damage are usually intermingled, the different clinical manifestations of recovery patterns associated with focal versus diffuse injuries are presented. The recognizable patterns of recovery, involving unconsciousness, posttraumatic confusion/amnesia, and postconfusional restoration, that typically occur across the full spectrum of diffuse injury are described, recognizing that the patient's long-term recovery may involve more idiosyncratic combinations of dysfunction. The review highlights the relationship of focal lesions to localizing syndromes that may be embedded in the evolving natural history of diffuse pathology. It is noted that injuries with primarily focal pathology do not necessarily follow a comparable pattern of recovery with distinct phases. Potential linkages of these recovery patterns to the known neuropathological sequelae of injury and various reparative mechanisms are considered and it is proposed that potential biological markers and newer imaging technologies will better define these linkages.
The long-term consequences of repetitive head impacts have been described since the early 20th century. Terms such as punch drunk and dementia pugilistica were first used to describe the clinical syndromes experienced by boxers. A more generic designation, chronic traumatic encephalopathy (CTE), has been employed since the mid-1900s and has been used in recent years to describe a neurodegenerative disease found not just in boxers but in American football players, other contact sport athletes, military veterans, and others with histories of repetitive brain trauma, including concussions and subconcussive trauma. This article reviews the literature of the clinical manifestations of CTE from 202 published cases. The clinical features include impairments in mood (for example, depression and hopelessness), behavior (for example, explosivity and violence), cognition (for example, impaired memory, executive functioning, attention, and dementia), and, less commonly, motor functioning (for example, parkinsonism, ataxia, and dysarthria). We present proposed research criteria for traumatic encephalopathy syndrome (TES) which consist of four variants or subtypes (TES behavioral/mood variant, TES cognitive variant, TES mixed variant, and TES dementia) as well as classifications of ‘probable CTE’ and ‘possible CTE’. These proposed criteria are expected to be modified and updated as new research findings become available. They are not meant to be used for a clinical diagnosis. Rather, they should be viewed as research criteria that can be employed in studies of the underlying causes, risk factors, differential diagnosis, prevention, and treatment of CTE and related disorders.
There is currently a lack of evidence-based guidelines to guide the pharmacological treatment of neurobehavioral problems that commonly occur after traumatic brain injury (TBI). It was our objective to review the current literature on the pharmacological treatment of neurobehavioral problems after traumatic brain injury in three key areas: aggression, cognitive disorders, and affective disorders/anxiety/ psychosis. Three panels of leading researchers in the field of brain injury were formed to review the current literature on pharmacological treatment for TBI sequelae in the topic areas of affective/anxiety/ psychotic disorders, cognitive disorders, and aggression. A comprehensive Medline literature search was performed by each group to establish the groups of pertinent articles. Additional articles were obtained from bibliography searches of the primary articles. Group members then independently reviewed the articles and established a consensus rating. Despite reviewing a significant number of studies on drug treatment of neurobehavioral sequelae after TBI, the quality of evidence did not support any treatment standards and few guidelines due to a number of recurrent methodological problems. Guidelines were established for the use of methylphenidate in the treatment of deficits in attention and speed of information processing, as well as for the use of beta-blockers for the treatment of aggression following TBI. Options were recommended in the treatment of depression, bipolar disorder/mania, psychosis, aggression, general cognitive functions, and deficits in attention, speed of processing, and memory after TBI. The evidence-based guidelines and options established by this working group may help to guide the pharmacological treatment of the person experiencing neurobehavioral sequelae following TBI. There is a clear need for well-designed randomized controlled trials in the treatment of these common problems after TBI in order to establish definitive treatment standards for this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.