A neuroimaging study examined the neural correlates of social exclusion and tested the hypothesis that the brain bases of social pain are similar to those of physical pain. Participants were scanned while playing a virtual ball-tossing game in which they were ultimately excluded. Paralleling results from physical pain studies, the anterior cingulate cortex (ACC) was more active during exclusion than during inclusion and correlated positively with self-reported distress. Right ventral prefrontal cortex (RVPFC) was active during exclusion and correlated negatively with self-reported distress. ACC changes mediated the RVPFC-distress correlation, suggesting that RVPFC regulates the distress of social exclusion by disrupting ACC activity.
Social cognitive neuroscience examines social phenomena and processes using cognitive neuroscience research tools such as neuroimaging and neuropsychology. This review examines four broad areas of research within social cognitive neuroscience: (a) understanding others, (b) understanding oneself, (c) controlling oneself, and (d) the processes that occur at the interface of self and others. In addition, this review highlights two core-processing distinctions that can be neurocognitively identified across all of these domains. The distinction between automatic versus controlled processes has long been important to social psychological theory and can be dissociated in the neural regions contributing to social cognition. Alternatively, the differentiation between internally-focused processes that focus on one's own or another's mental interior and externally-focused processes that focus on one's own or another's visible features and actions is a new distinction. This latter distinction emerges from social cognitive neuroscience investigations rather than from existing psychological theories demonstrating that social cognitive neuroscience can both draw on and contribute to social psychological theory.
Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors.
This review proposes that implicit learning processes are the cognitive substrate of social intuition. This hypothesis is supported by (a) the conceptual correspondence between implicit learning and social intuition (nonverbal communication) and (b) a review of relevant neuropsychological (Huntington's and Parkinson's disease), neuroimaging, neurophysiological, and neuroanatomical data. It is concluded that the caudate and putamen, in the basal ganglia, are central components of both intuition and implicit learning, supporting the proposed relationship. Parallel, but distinct, processes of judgment and action are demonstrated at each of the social, cognitive, and neural levels of analysis. Additionally, explicit attempts to learn a sequence can interfere with implicit learning. The possible relevance of the computations of the basal ganglia to emotional appraisal, automatic evaluation, script processing, and decision making are discussed.
Putting feelings into words (affect labeling) has long been thought to help manage negative emotional experiences; however, the mechanisms by which affect labeling produces this benefit remain largely unknown. Recent neuroimaging studies suggest a possible neurocognitive pathway for this process, but methodological limitations of previous studies have prevented strong inferences from being drawn. A functional magnetic resonance imaging study of affect labeling was conducted to remedy these limitations. The results indicated that affect labeling, relative to other forms of encoding, diminished the response of the amygdala and other limbic regions to negative emotional images. Additionally, affect labeling produced increased activity in a single brain region, right ventrolateral prefrontal cortex (RVLPFC). Finally, RVLPFC and amygdala activity during affect labeling were inversely correlated, a relationship that was mediated by activity in medial prefrontal cortex (MPFC). These results suggest that affect labeling may diminish emotional reactivity along a pathway from RVLPFC to MPFC to the amygdala.
Objective: Mindfulness is a process whereby one is aware and receptive to present moment experiences. Although mindfulnessenhancing interventions reduce pathological mental and physical health symptoms across a wide variety of conditions and diseases, the mechanisms underlying these effects remain unknown. Converging evidence from the mindfulness and neuroscience literature suggests that labeling affect may be one mechanism for these effects. Methods: Participants (n ϭ 27) indicated trait levels of mindfulness and then completed an affect labeling task while undergoing functional magnetic resonance imaging. The labeling task consisted of matching facial expressions to appropriate affect words (affect labeling) or to gender-appropriate names (gender labeling control task). Results: After controlling for multiple individual difference measures, dispositional mindfulness was associated with greater widespread prefrontal cortical activation, and reduced bilateral amygdala activity during affect labeling, compared with the gender labeling control task. Further, strong negative associations were found between areas of prefrontal cortex and right amygdala responses in participants high in mindfulness but not in participants low in mindfulness. Conclusions: The present findings with a dispositional measure of mindfulness suggest one potential neurocognitive mechanism for understanding how mindfulness meditation interventions reduce negative affect and improve health outcomes, showing that mindfulness is associated with enhanced prefrontal cortical regulation of affect through labeling of negative affective stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.