Personality extraction through social networks is a field that only recently started to capture the attention of researchers. The task consists in, starting with a corpus of user profiles on a particular social network, classifying their personalities correctly, according to a specific personality model as described in psychology. In this master thesis, three innovations to the domain are presented. Firstly, the collection of a corpus of LinkedIn users. Secondly, the extraction of the personality according to two personality models, DiSC and MBTI, the extraction with DiSC having never been done before. Lastly, the idea of going from one personality model to the other is explored, thus creating the possibility of having the results on two personality models with only one personality test.